3.27.68 \(\int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx\) [2668]

Optimal. Leaf size=160 \[ -\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}-\frac {12758 \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615} \]

[Out]

31588/19845*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-12758/19845*EllipticF(1/7*21^(1/2)*
(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-118/315*(3+5*x)^(3/2)*(1-2*x)^(1/2)/(2+3*x)^(3/2)-2/15*(3+5*x)^(5/2)*(
1-2*x)^(1/2)/(2+3*x)^(5/2)-12758/6615*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {99, 155, 164, 114, 120} \begin {gather*} -\frac {12758 \sqrt {\frac {11}{3}} F\left (\text {ArcSin}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\text {ArcSin}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{315 (3 x+2)^{3/2}}-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{6615 \sqrt {3 x+2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^(7/2),x]

[Out]

(-12758*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(6615*Sqrt[2 + 3*x]) - (118*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(315*(2 + 3*x)
^(3/2)) - (2*Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(15*(2 + 3*x)^(5/2)) + (31588*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7
]*Sqrt[1 - 2*x]], 35/33])/6615 - (12758*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/6615

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx &=-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {2}{15} \int \frac {\left (\frac {19}{2}-30 x\right ) (3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{5/2}} \, dx\\ &=-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {4}{945} \int \frac {\left (\frac {999}{4}-\frac {4035 x}{2}\right ) \sqrt {3+5 x}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx\\ &=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {8 \int \frac {-\frac {73785}{8}-\frac {118455 x}{2}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{19845}\\ &=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}-\frac {31588 \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx}{6615}+\frac {70169 \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{6615}\\ &=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}-\frac {12758 \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.90, size = 99, normalized size = 0.62 \begin {gather*} \frac {-\frac {6 \sqrt {1-2 x} \sqrt {3+5 x} \left (36919+113319 x+87021 x^2\right )}{(2+3 x)^{5/2}}+\sqrt {2} \left (-31588 E\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )|-\frac {33}{2}\right )+242095 F\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )|-\frac {33}{2}\right )\right )}{19845} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^(7/2),x]

[Out]

((-6*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(36919 + 113319*x + 87021*x^2))/(2 + 3*x)^(5/2) + Sqrt[2]*(-31588*EllipticE[A
rcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2] + 242095*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]))/19845

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(307\) vs. \(2(116)=232\).
time = 0.10, size = 308, normalized size = 1.92

method result size
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (-\frac {2 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{3645 \left (\frac {2}{3}+x \right )^{3}}+\frac {86 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{2835 \left (\frac {2}{3}+x \right )^{2}}-\frac {6446 \left (-30 x^{2}-3 x +9\right )}{6615 \sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}-\frac {4919 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{27783 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {31588 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{27783 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(249\)
default \(-\frac {\left (1894563 \sqrt {2}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+284292 \sqrt {2}\, \EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+2526084 \sqrt {2}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+379056 \sqrt {2}\, \EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+842028 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+126352 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+5221260 x^{4}+7321266 x^{3}+1328676 x^{2}-1818228 x -664542\right ) \sqrt {1-2 x}\, \sqrt {3+5 x}}{19845 \left (10 x^{2}+x -3\right ) \left (2+3 x \right )^{\frac {5}{2}}}\) \(308\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/19845*(1894563*2^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x^2*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)
^(1/2)+284292*2^(1/2)*EllipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x^2*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/
2)+2526084*2^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)+37
9056*2^(1/2)*EllipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)+842028*2
^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))+126352*2^(1/2)*(
2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))+5221260*x^4+7321266*x^3+
1328676*x^2-1818228*x-664542)*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(10*x^2+x-3)/(2+3*x)^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="maxima")

[Out]

integrate((5*x + 3)^(5/2)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.13, size = 50, normalized size = 0.31 \begin {gather*} -\frac {2 \, {\left (87021 \, x^{2} + 113319 \, x + 36919\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}}{6615 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="fricas")

[Out]

-2/6615*(87021*x^2 + 113319*x + 36919)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(27*x^3 + 54*x^2 + 36*x + 8)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(5/2)*(1-2*x)**(1/2)/(2+3*x)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="giac")

[Out]

integrate((5*x + 3)^(5/2)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {1-2\,x}\,{\left (5\,x+3\right )}^{5/2}}{{\left (3\,x+2\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^(7/2),x)

[Out]

int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^(7/2), x)

________________________________________________________________________________________